全国服务热线
0512-6883-0001
18016327626

压力容器应力分析及理论

2022-12-19
钢制压力容器分析设计和压力管道应力分析分别采用了厚壁和薄壁模型,薄壁假设认为各应力沿壁厚均匀分布,忽略了弯曲应力,压力容器的常规设计方法也是采用这种假设;厚壁假设认为各应力沿壁厚是可以变化的,有弯曲应力的存在。因而,利用厚壁假设进行应力分析更为精确和严密。根据ASME B31.3的规定,当管道的公称压力大于42MPa时,薄壁模型已不再适用,应采用高压管道的分析校核准则。

由于不同类型的应力对损伤破坏的影响各不相同,因此便出现了应力分类校核的方法,钢制压力容器分析设计和压力管道应力分析都遵循等安全裕度原则。在压力容器分析设计中各种应力的定义为:
(1)一次应力:为平衡压力和其它机械载荷所必需的法向应力或剪应力。一次应力又细分为一次总体薄膜应力Pm、一次局部应力PL和一次弯曲应力Pb。
(2)二次应力Q:为满足外部约束条件或结构自身变形连续要求必需的法向应力或剪应力。主要包括边缘应力和温度应力等。
(3)峰值应力F:由于局部结构不连续或局部热应力影响而引起的附加在一次应力加二次应力上的应力增量。
在压力容器分析设计中将应力细分为5类,即:一次总体薄膜应力Pm、一次局部薄膜应力PL、一次弯曲应力Pb、二次应力Q和峰值应力F。在压力管道应力分析中,也人为的将应力划分为一次应力σI、二次应力σII两大类,其概念与压力容器分析设计中的定义基本相同,只是不再细分为一次总体薄膜应力、一次局部薄膜应力和一次弯曲应力,也没有峰值应力的概念。这主要是在压力管道应力分析中采用薄壁假设的缘故。对于弯头、三通等几何不连续的应力集中,压力管道应力分析中采用了应力增大系数的方法处理。而应力增大系数的数值是由疲劳试验得出来的,它并不是应力集中系数,两者不能混淆。
在压力容器分析设计中采用了第三强度理论,即最大剪应力理论。最大剪应力理论的当量应力是第一主应力与第三主应力之差,在压力容器分析设计中,将这一当量应力定义为应力强度。
1.png在压力管道应力分析中,一次应力是指管道纵向的组合应力,并不是在各种情况下等于最大拉应力。因此,一次应力校核条件看似属于第一强度理论,实际上它不与任何强度理论相符合,应力是被限制在屈服限内,并留有一定的裕度。二次应力校核条件则来源于安定性的概念,可防止低周和高周疲劳破坏。



《上一页 下一页》