全国服务热线
0512-6883-0001
18016327626

残余应力在几种典型工况下的产生

2022-02-17

01

铸造应力的产生

(1) 热应力

由于铸件各部分的薄厚不一样(如机床床身导轨部分很厚,侧壁、筋板部分较薄),铸后,薄壁部分冷却速度快收缩大,而厚壁部分,冷却速度慢,收缩小。薄壁部分的收缩受到厚壁部分的阻碍,所以薄壁部分受拉力,厚壁部分受压力。因纵向收缩差大,因而产生的拉压应力也大。这时铸件的温度高,薄厚壁都处于塑性状态,其压应力使厚壁部分变粗,拉应力使薄壁部分变薄,拉压应力随塑性变形而消失。


铸件逐渐冷却,当薄壁部分进入弹性状态而厚壁部分仍处于塑性时,压应力使厚壁部分产生塑性变形,继续变粗,而薄壁部分只是弹性拉长,这时拉压应力随厚壁部分变粗而消失。铸件仍继续冷却,当薄厚壁部分进入弹性区时,由于厚壁部分温度高,收缩量大。但薄壁部分阻止厚壁部分收缩,故薄壁受压应力,厚壁受拉应力。应力方向发生了变化。这种作用一直持续到室温,结果在常温下厚壁部分受拉应力,薄壁部分受压应力。


这个应力是由于各部分薄厚不同。冷却速度不同,塑性变形不均匀而产生的,叫热应力。


在导轨或侧壁的同一个截面内,表层与内心部,由于冷却快慢不同,也产生相互平衡的拉压应力,用类似与上述方法分析,可知在室温下表层受压应力,心部受拉应力,并且截面越大,应力越大,此应力也叫热应力。


(2)相变应力

常用的铸铁含碳量在2.8-3.5%,属于亚共晶铸铁,由结晶过程可知:厚壁部分在1153℃共晶结晶时,析出共晶石墨,产生体积膨胀 ,薄壁部分阻碍其膨胀,厚壁部分受压应力,薄壁部分受拉应力。厚壁部分因温度高,降温速度快,收缩快,所以厚壁逐渐变为受拉应力。而薄壁与其相反。在共析(738℃)前的收缩中,薄厚壁均处于塑性状态,应力虽然不断产生,但又不断被塑性变性所松弛,应力并不大。当降到738℃时,铸铁发生共析转变,由面心立方结构变为体心立方结构(既γ—Fe变为a —Fe),同时有共析石墨析出,使厚壁部分伸入产生压应力。上述的两种应力,是在1153℃ 和738 ℃两次相变而产生的,叫相变应力。相变应力与冷却过程中产生的热应力方向相反,相变应力被热应力抵消。在共析转变以后,不在产生相变应力,因此铸件由于薄厚冷却速度不同所形成的热应力起主要作用。


(3)收缩应力(亦叫机械阻碍应力):

铸件在固态收缩时,因受到铸型、型芯、浇冒口等的阻碍作用而产生的应力叫收缩应力。由于各部分由塑性到弹性状态转变有先有后,型芯等对收缩的阻力将在铸件内造成不均匀的的塑性变形,产生残余应力。收缩应力一般不大,多在打箱后消失。


02

焊接应力的产生

焊接中、焊缝处温度迅速升高,体积膨胀。热影响区温度低,阻碍焊缝膨胀,结果焊缝处产生压应力,热影响区产生拉应力。但此时焊缝处于塑性状态,焊缝被压应力墩粗,松弛了此应力。


焊后冷却时,热影响区冷却速度快,很快进入弹性状态,焊缝处温度高,处于塑性状态。这时焊缝收缩,较热影响区收缩慢,焊缝阻碍热影响区收缩,焊缝仍受压应力,影响区受拉应力。但焊缝处于塑性状态,焊缝的塑性墩粗,松弛了此应力。


热影响区温度不断降低,冷却速度也变慢,当焊缝的冷却速度高于热影响区时,焊缝收缩较快,焊缝的收缩受到热影响区阻碍,应力方向发生了转变,焊缝受拉应力,热影响区受压应力。当焊缝和热影响区都进入弹性状态时,因焊缝温度高,冷却速度快,收缩量大,热影响区温度低,冷却速度低,收缩量小,焊缝收缩受到热影响区阻碍,结果焊缝受拉应力,热影响区受压应力。此时没有塑性变形,这一对压应力,随着温度的降低,焊缝收缩受阻碍越来越大,拉应力也越来越大,直至室温,拉应力可近似于屈服极限。


03

淬火产生的残余应力

淬火工艺使构件产生残余应力的主要原因,是淬火件外表和心部的温差而造成的热应力,其次是由于相变而产生的组织应力。构件最终的残余应力将是这两种应力的综合值。

残余应力是工件变形、断裂、疲劳寿命的重要原因,为保证工件生产的合格率及精密度,残余应力检测必不可少。在目前应用较为广泛的残余应力检测方法中,X 射线残余应力检测法较为成熟且稳定。但是检测仪器比较笨重,操作耗时且伴随着辐射。而超声波应力检测法操作简便、快速、不损伤材料,也不会对检测人员造成伤害。



《上一页 下一页》